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Abstract 54 

Genetic information is involved in the gradual emergence of cortical areas since the 55 

neural tube begins to form, shaping the heterogeneous functions of neural circuits in 56 

the human brain. Informed by invasive tract-tracing measurements, the cortex 57 

exhibits marked interareal variation in connectivity profiles, revealing the 58 

heterogeneity across cortical areas. However, it remains unclear about the 59 

organizing principles possibly shared by genetics and cortical wiring to manifest the 60 

spatial heterogeneity across cortex. Instead of considering a complex one-to-one 61 

mapping between genetic coding and interareal connectivity, we hypothesized the 62 

existence of a more efficient way that the organizing principles are embedded in 63 

genetic profiles to underpin the cortical wiring space. Leveraging vertex-wise 64 

tractography in diffusion-weighted MRI, we derived the global connectopies in both 65 

female and male to reliably index the organizing principles of interareal connectivity 66 

variation in a low-dimensional space, which captured three dominant topographic 67 

patterns along the dorsoventral, rostrocaudal, and mediolateral axes of the cortex. 68 

More importantly, we demonstrated that the global connectopies converge with the 69 

gradients of a vertex-by-vertex genetic correlation matrix on the phenotype of cortical 70 

morphology and the cortex-wide spatiomolecular gradients. By diving into the genetic 71 

profiles, we found that the critical role of genes scaffolding the global connectopies 72 

was related to brain morphogenesis and enriched in radial glial cells before birth and 73 

excitatory neurons after birth. Taken together, our findings demonstrated the 74 

existence of a genetically determined space that encodes the interareal connectivity 75 
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variation, which may give new insights into the links between cortical connections 76 

and arealization. 77 

Keywords： global connectopy, genetic topography, diffusion MRI tractography, 78 

structural connectivity, cerebral cortex  79 
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Significance Statement 80 

Genetic factors have involved the gradual emergence of cortical areas since the 81 

neural tube begins to form, shaping the specialization of neural circuitry in the human 82 

brain. However, the mechanisms through which genetics encode the complex 83 

interareal connectivity remain a pivotal and unanswered question in the field of 84 

neuroscience. Here, we hypothesized that a genetically determined space encoding 85 

the interareal connectivity variation exists, which may give new insights into the links 86 

between cortical connections and arealization. We combined diffusion tractography 87 

with a dimension reduction framework to unravel the underlying global topographic 88 

principle revealed by the anatomical connections. 89 

  90 
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Introduction 91 

Mounting evidence has suggested that the genetic effects on the anatomical 92 

phenotypes of the human brain are spatially heterogeneous (Chen et al., 2011; Chen 93 

et al., 2012; Chen et al., 2013; Huang et al., 2023), demonstrating the vital roles of 94 

genes in establishing the configuration of brain space, such as the anatomical 95 

hierarchy (Burt et al., 2018; Wang et al., 2024) and the wiring diagram (Srinivasan et 96 

al., 2012; Greig et al., 2013; Molnar et al., 2019). The profile of cortical wiring that 97 

can be characterized using neuroimaging-based tractography is especially reliable 98 

for indicating the heterogeneity across cortical areas (Passingham et al., 2002; Fan 99 

et al., 2016; Cheng et al., 2021), reflecting differentiation in local microstructures and 100 

connectivity patterns. The interareal connectivity variation has further revealed the 101 

spatially heterogeneous patterns of cortical organization, such as regional 102 

controllability related to cognitive dynamics (Gu et al., 2015; Cui et al., 2020). In 103 

contrast, the deficit in interareal connectivity has demonstrated the specificity of the 104 

behavioral manifestations of brain lesions (Thiebaut de Schotten et al., 2020; Talozzi 105 

et al., 2023). Although spatial heterogeneity has been separately found to be 106 

embedded in genetic architecture and interareal connectivity variation, it is still largely 107 

unknown if a unified organizing principle exists underlying their indication of spatial 108 

heterogeneity. 109 

The spatiotemporal distribution of genetic factors along the developing brain has 110 

been found to set the primary cues that guide the process of cortical arealization 111 

(O'Leary and Sahara, 2008; Cadwell et al., 2019). It has been pointed out that gene-112 
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coded signaling molecules and transcriptional profiles may contribute to this 113 

guidance process, and these mechanisms may even be conserved into maturity 114 

(Hawrylycz et al., 2015; Vogel et al., 2024). Specifically, under the effect of 115 

morphogens secreted from the patterning centers, transcription factors are 116 

expressed in a graded manner and determine the areal fate and the expression of 117 

cell-surface molecules, thus determining the topographic organization of synaptic 118 

inputs and outputs (Rubenstein and Rakic, 1999; Chen et al., 2013) and directing 119 

axonal outgrowth (Chilton, 2006). Nevertheless, considering the complexity and 120 

flexibility of neural circuits, it is difficult to conceive of the existence of a one-to-one 121 

mapping between the genetic codes and the wiring patterns (Hassan and Hiesinger, 122 

2015). Alternatively, we hypothesize that the genetic profiles distributed across the 123 

cortex may contain the organizing principles of cortical wiring (Hassan and Hiesinger, 124 

2015). In this way, the genetic processes and the cortical wiring patterns can be 125 

systematically unified to provide a more complete understanding of the heterogeneity 126 

across the cortex. Recent advances in acquiring high-throughput transcriptomic data 127 

of the human brain (Shen et al., 2012) and large-scale twin samples (Chen et al., 128 

2011; Chen et al., 2012) with neuroimaging data provide essential resources to test 129 

our hypothesis. 130 

Furthermore, even if we can identify the genetic topography, it remains unknown 131 

whether we can leverage it to explain the interareal connectivity variation captured by 132 

high-resolution connectomics (Taylor et al., 2017; Mansour et al., 2021). Recent 133 

studies have revealed that cortical areas are hierarchically organized along the 134 
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cortex from a large-scale gradient perspective of connectivity (Margulies et al., 2016; 135 

Huntenburg et al., 2018), indicating that the cortex is organized topologically within 136 

interareal connectivity variation, supporting diverse dynamics and functions (Atasoy 137 

et al., 2016; Robinson et al., 2016; Preti and Van De Ville, 2019; Chu et al., 2024). 138 

However, traditional neural circuit tracing techniques, including classical tracers or 139 

virus tracing, are precluded in humans, thereby creating the need for noninvasive 140 

measures of the topography embedded in interareal connectivity variation, which 141 

could contribute to testing the existence of unified rules underlying the genetic 142 

topography and interareal connectivity variation. 143 

To address these open questions, we first quantified the interareal connectivity 144 

variation by establishing the similarity matrix of the structural connectivity profiles. 145 

Leveraging a manifold learning approach, we identified three components (hereafter 146 

also referred to as global connectopy) running separately along the dorsoventral, 147 

rostrocaudal, and mediolateral axes of the brain anatomy, which efficiently delineated 148 

the interareal connectivity variation. Then, we characterized the genetic topography 149 

by respectively utilizing the gradients from the twin-based genetic correlation matrix 150 

of cortical morphology and the cortex-wide gene expression matrix. Based on the 151 

identified global connectopy and the genetic topography, we provided evidence 152 

supporting our hypothesis by demonstrating the significant consistency between 153 

them. Furthermore, we identified specific genes associated with the global 154 

connectopies that were involved in brain morphogenesis and enriched in radial glial 155 

cells before birth and excitatory neurons related with cortical projection circuit 156 
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formation after birth. Our analytic logic is detailed in Figure 1 to provide an overview 157 

of the current study. 158 

  159 
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Materials and Methods 160 

Data and preprocessing 161 

Data collection We used a publicly available dataset containing 100 unrelated 162 

subjects (HCP-U100) (46 males; mean age, 29.11±3.67; age range, 22-36) provided 163 

by the Human Connectome Project (HCP) database (Van Essen et al., 2013) 164 

(http://www.humanconnectome.org/). All the scans and data from the individuals 165 

included in the study had passed the HCP quality control and assurance standards. 166 

The scanning procedures and acquisition parameters were detailed in previous 167 

publications (Glasser et al., 2013). In brief, T1w images were acquired with a 3D 168 

MPRAGE sequence on a Siemens 3T Skyra scanner equipped with a 32-channel 169 

head coil with the following parameters: TR = 2400 ms, TE = 2.14 ms, flip angle = 8°, 170 

FOV = 224×320 mm2, voxel size = 0.7 mm isotropic. Diffusion data were acquired 171 

using single-shot 2D spin-echo multiband echo planar imaging on a Siemens 3 Tesla 172 

Skyra system (TR = 5520 ms, TE = 89.5 ms, flip angle = 78°, FOV = 210×180 mm). 173 

These consisted of three shells (b-values = 1000, 2000, and 3000 s/mm2), with 90 174 

diffusion directions isotropically distributed among each shell and six b = 0 175 

acquisitions within each shell, with a spatial resolution of 1.25 mm isotropic voxels. 176 

Image preprocessing The human T1w structural data had been preprocessed 177 

following the HCP’s minimal preprocessing pipeline (Glasser et al., 2013). In brief, 178 

the processing pipeline included imaging alignment to standard volume space using 179 

FSL, automatic anatomical surface reconstruction using FreeSurfer, and registration 180 
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to a group average surface template space using the multi-modal surface matching 181 

(MSM) algorithm (Robinson et al., 2014). Human volume data were registered to the 182 

Montreal Neurological Institute (MNI) standard space, and surface data were 183 

transformed into surface template space (fs_LR). 184 

The diffusion Images were processed using FDT (FMRIB’s Diffusion Toolbox) of 185 

FSL. The main steps included normalization of the b0 image intensity across runs 186 

and correction for echo-planar imaging (EPI) susceptibility, eddy-current-induced 187 

distortions, gradient-nonlinearities, and subject motion. DTIFIT was then used to fit a 188 

diffusion tensor model. The probability distributions of the fiber orientation distribution 189 

were estimated using Bedpostx. 190 

Next, skull-stripped T1-weighted images for each subject were co-registered to 191 

the subject’s b0 images using FSL’s FLIRT algorithm. Then, nonlinear 192 

transformations between the T1 image and the MNI structural template were 193 

obtained using FSL’s FNIRT. By concatenating these, we derived bi-directional 194 

transformations between the diffusion and MNI spaces. 195 

Connectopy mapping 196 

Tractography and connectivity blueprints To map the whole-brain connectivity 197 

pattern, we performed probabilistic tractography using FSL’s probtrackx2 accelerated 198 

by using GPUs (Behrens et al., 2007; Hernandez-Fernandez et al., 2019). 199 

Specifically, the white surface was set as a seed region tracking to the rest of the 200 

brain with the ventricles removed and down-sampled to 3 mm resolution. The pial 201 
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surface was used as a stop mask to prevent streamlines from crossing sulci. Each 202 

vertex was sampled 5,000 times (5,000 trackings) based on the orientation 203 

probability model for each voxel, with a curvature threshold of 0.2, a step length of 204 

0.5 mm, and a number of steps of 3,200. This resulted in a (whole-surface vertices) × 205 

(whole-brain voxels) matrix for further analysis. We checked the preprocessing 206 

images and tractography results of each subject to ensure the accuracy of our 207 

analysis. Specifically, the reconstructed surfaces were visually inspected, and 208 

transforms between different spaces were checked carefully. Tractography results 209 

were also visually checked to ensure that no streamlines crossed the sulci. We also 210 

calculated whole-brain connections at the ROI-wise. We performed tractography from 211 

regions to the whole brain using Schaefer-400 parcellation (Schaefer400) (Schaefer 212 

et al., 2018) to get a (whole brain ROIs) × (whole-brain voxels) matrix for further 213 

analysis. 214 

We additionally created connectivity blueprints following previous work (Mars et 215 

al., 2018), which had been used to characterize connectivity patterns of brain regions 216 

or cortical vertices. Specifically, we first reconstructed 72 fiber bundles using a pre-217 

trained deep-learning model, TractSeg (Wasserthal et al., 2018), and down-sampled 218 

the resulting tract masks to 3 mm resolution, yielding a (tracts) × (whole-brain voxels) 219 

matrix. The connectivity blueprints were then generated by the product of this tract 220 

matrix and the whole-brain connectivity matrix, which was obtained and normalized 221 

as described in the Tractography section. The columns of the resulting (tracts) × 222 
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(whole-surface vertices) matrix showed the connectivity distribution pattern of each 223 

cortical vertex, while the rows revealed the cortical termination patterns of the tracts. 224 

Tractogram covariance analysis We calculated the tractogram covariance (TC) 225 

matrix to characterize the structural connectivity similarity profile. The vertex profiles 226 

underwent pairwise Pearson correlations, controlling for the average whole-cortex 227 

profile. For a given pair of vertices, i and j, TC was calculated as 228 

𝑇𝐶(𝑖, 𝑗) =
𝑟𝑖𝑗 − 𝑟𝑖𝑐𝑟𝑗𝑐

√(1 − 𝑟𝑖𝑐
2 )(1 − 𝑟𝑗𝑐

2 )

 229 

in which rij was the Pearson correlation coefficient of the structural connectivity 230 

profile at vertices i and j, ric the correlation of the structural connectivity profile at 231 

vertex i with the average connectivity profile across the whole cortex, and rjc the 232 

correlation of the structural connectivity profile at vertex j with the average 233 

connectivity profile across the entire cortex. A symmetric ~30k × 30k TC matrix was 234 

produced for each subject. The TC matrices of all subjects were then averaged 235 

separately for the left and right hemispheres to obtain a group-level TC matrix for 236 

each hemisphere. In line with a previous study (Paquola et al., 2019), the TC matrix 237 

was proportionally thresholded at 90% per row, with elements above zero retained to 238 

remove negative connections. 239 

Connectopy decomposition The TC matrix was transformed into a non-negative 240 

square symmetric affinity matrix using a cosine affinity kernel. Then, diffusion map 241 

embedding was implemented to identify the principal gradient components (Coifman 242 

et al., 2006). Diffusion map embedding is a nonlinear manifold learning technique 243 
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that maps cortical gradients (Margulies et al., 2016). Along these gradients, cortical 244 

vertices with similar connectivity profiles are embedded along the axis. Diffusion map 245 

embedding is relatively robust to noise and less computationally expensive than 246 

other nonlinear manifold learning techniques. 247 

Global connectopies were computed separately for the left and right 248 

hemispheres with two key parameters: α controls the influence of the density of 249 

sampling points on the manifold, and t controls the scale of the eigenvalues. Here, 250 

we set α=0.5 and t=0 as recommended (Margulies et al., 2016). The amount of 251 

explained variance was assessed, and the first three global connectopies were 252 

chosen to map onto the cortical surface for further analysis. The ROI-wise global 253 

connectopies were also computed in the same model. 254 

Individual global connectopies were calculated for each subject and aligned to 255 

the group GC with Procrustes rotation, which matches the order and direction of the 256 

global connectopies without scaling. The application of Procrustes rotation allows for 257 

comparison between individuals. 258 

Projection of the global connectopies onto the white matter voxels We used 259 

general linear models (GLM) to project the global connectopies onto the white matter 260 

(Tarun et al., 2020), exploring the contribution of each white matter voxel to the 261 

global connectopies. Specifically, we used the global connectopies as the dependent 262 

variable and the structural connection matrix as the independent variable. The 263 

resultant weights indicate the contribution of each white matter voxel. Note that the 264 
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structural connection of each subject was obtained from probabilistic tractography in 265 

individual diffusion space. Each subject's data were registered to MNI standard 266 

space and averaged, resulting in a group-level structural connection matrix. 267 

Projection of the connectopies onto the white matter tracts To investigate how 268 

the global connectopies are related to the underlying white matter tracts, we created 269 

a tract projection map using the tract mask generated by TractSeg. Seventy-two 270 

tracts identified by TractSeg were grouped into five types for analysis: association 271 

tracts, commissural tracts, projection tracts, thalamo tracts, and striato tracts (Table 272 

S2-1). Using the connectivity blueprints we built earlier, we extracted the projection 273 

on the surface of each tract and calculated the mean value and variance using the 274 

connectopy values of tract projection on the surface, thus revealing the relationship 275 

between the tracts and global connectopies. Due to the absence of projection on the 276 

surface, we excluded the fornix (FX), superior cerebellar peduncle (SCP), middle 277 

cerebellar peduncle (MCP), and inferior cerebellar peduncle (ICP) from the study. We 278 

additionally removed the Corpus Callosum – all because several of its segments 279 

were also reconstructed by TractSeg, i.e., CC_1 to CC_7. 280 

Visualization of connectopies To intuitively inspect the global connectopies 281 

together, we plotted every pair of global connectopies in a 2D space and assigned 282 

colors based on their positions. Then, we generated RGB values for each vertex by 283 

normalizing the three global connectopy values and mapped them on the surface, 284 

showing the dominant global connectopy at the vertex. Specifically, for the first 285 
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gradient, the values of all vertices were normalized from zero to one, resulting in the 286 

value of the red channel. The other two were conducted the same. 287 

Hierarchical organization analysis 288 

We implemented hierarchical clustering using global connectopies to test if the global 289 

connectopies could provide a descriptor of arealization. At the first level, the vertices 290 

were sorted in descending order based on the first global connectopy. Brain regions 291 

were partitioned into two subregions according to the sign of the connectopy value. 292 

Furthermore, based on the positivity and negativity of the second and third global 293 

connectopies, the whole cortex was partitioned into eight modules. 294 

Gene analysis 295 

Genetic correlation analysis of thickness and surface area We selected 194 296 

twins from the HCP database (102 monozygotic and 92 dizygotic pairs; mean age, 297 

29.96±2.96; age range, 22-36). The cortical surface was reconstructed to measure 298 

cortical thickness and surface areas at each surface location using FreeSurfer in the 299 

fsaverage3 template to reduce computation time. 300 

In a classical twin study of sets of monozygotic (MZ) and dizygotic (DZ) twins, 301 

four latent factors could account for the variance of any phenotype: additive genetic 302 

effects (A); non-additive genetic effects, including dominance (D); common or shared 303 

environmental effects (C); and non-shared or individual-specific environmental 304 

effects (E). Since MZ twins are assumed to be genetically identical, their genetic 305 

correlation is perfect (r = 1.0) for both additive and non-additive genetic effects. In 306 
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contrast, DZ twins share, on average, 50% of their genes, resulting in correlations of 307 

0.50 for additive genetic effects and 0.25 for non-additive genetic effects. The C term 308 

refers to environmental factors that contribute to similarities between twins; thus, 309 

shared environmental factors have a correlation of 1.0 across twin pairs, regardless 310 

of zygosity. The E term represents environmental factors that create differences 311 

between twins. Since these are individual-specific factors, they are considered 312 

uncorrelated across twins. 313 

Given the minimal difference between the A and D effects, we fitted bivariate 314 

ACE models to calculate the genetic correlations of cortical thickness and surface 315 

area between two cortical vertices. This approach allows us to explore both genetic 316 

and environmental contributions to variance and covariance. A phenotypic correlation 317 

reflects the shared variance between two traits, combining both genetic and 318 

environmental components. Specifically, it is defined as the total covariance (genetic 319 

plus environmental) between two variables, divided by the square root of the product 320 

of their respective total variances. After decomposing variance sources in the 321 

bivariate model, we computed genetic correlations, which represent the genetic 322 

covariance divided by the square root of the product of the genetic variances of the 323 

two variables. The analyses were performed using OpenMx (Neale et al., 2016). The 324 

terms of the output genetic correlation matrix represented the genetic correlation 325 

decomposed from the total phenotypic correlation between two cortical vertices. 326 

We then implemented diffusion map embedding on the genetic correlation matrix 327 

and compared it with the global connectopies. Genetic patterning results were 328 
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obtained from previous studies (Chen et al., 2012; Chen et al., 2013), which 329 

parcellated the cortex into four and twelve clusters. The parcellation results were 330 

compared with the modules derived from hierarchical clustering using the global 331 

connectopies. 332 

AHBA data and preprocessing Regional microarray gene expression data were 333 

obtained from 6 postmortem brains (1 female, ages 24-57) provided by the Allen 334 

Human Brain Atlas (AHBA, https://human.brain-map.org/). The data were processed 335 

using the abagen toolbox (version 0.1.1; https://github.com/rmarkello/abagen) 336 

(Markello et al., 2021). First, the microarray probes were reannotated (Arnatkeviciute 337 

et al., 2019), and probes that did not match a valid Entrez ID were excluded. Then, 338 

the probes were filtered based on their expression intensity relative to background 339 

noise, and the probes with the maximum summed adjacency for representing the 340 

corresponding gene expression were kept, yielding 15,633 genes corresponding to 341 

more than one probe. Finally, we resampled the output gene expression map in fs5 342 

space to fsaverage_LR32k space for subsequent study. 343 

Analysis of morphogen gradient-related genes We further selected morphogen 344 

genes in AHBA data (Rakic et al., 2009) and examined their expression difference 345 

along the global connectopies. Each global connectopy was subdivided equally into 346 

ten parts, and two sample t-tests were used to assess the difference in gene 347 

expression of selected genes between the first and the last bins (Fjell et al., 2019). 348 

We also examined the differential stability (DS) of morphogen genes, which is 349 

defined as the tendency for a gene to exhibit reproducible differential expression 350 
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relationships across brain structures, specifically the average Pearson correlation 351 

over 15 pairs of 6 brains in the AHBA dataset (Hawrylycz et al., 2015). 352 

Correspondence to spatiomolecular gradients Researchers recently reported 353 

three spatiomolecular gradients that retained the same pattern as morphogenetic 354 

gradients during development, which varied along three spatially embedded axes 355 

(Vogel et al., 2024). We only used data from the left hemisphere to reproduce these 356 

molecular gradients follow the previous publication, because few samples in the 357 

AHBA were obtained from the right hemisphere. 358 

Gene enrichment analysis We used a prediction framework, partial least squares 359 

regression (PLSR), to determine the covariance between gene expression and global 360 

connectopies. We then conducted 1,000 bootstrapping to estimate the error of the 361 

weight of each gene. The normalized weight of each gene was denoted as the weight 362 

divided by the estimated error (Morgan et al., 2019).  363 

Genes were selected as the top and bottom 0.83% genes (n = 260) of each 364 

global connectopy's gene list, corrected for both tails and all three global 365 

connectopies for multiple comparisons. Each gene set, combining both tails, 366 

underwent cell-type enrichment analysis on the filtered genes using CellGO 367 

(http://www.cellgo.world) (Li et al., 2023). Single-cell datasets collected from prenatal 368 

(Fan et al., 2020) and postnatal sample were used (Ma et al., 2022). Seven major 369 

classes of cells were provided in the prenatal sample, including radial glial cells (RG), 370 

intermediate progenitor cells (IPC), excitatory neurons (ExN), inhibitory neurons 371 
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(InN), oligodendrocyte precursor cells/oligodendrocytes (OPC/Oligo), astrocytes 372 

(Astro), and microglia cells (Microglia). Six major classes of cells were provided in the 373 

postnatal sample, including ExN, InN, Oligo, OPC, Astro, and Microglia. The 374 

enrichment P-values of the cell types resulting from the submitted genes were based 375 

on the Kolmogorov-Smirnov (K-S) test in CellGO. 376 

We collected gene expression data for all time points in the BrainSpan dataset to 377 

determine the developmental pattern of gene expression (Miller et al., 2014). Only 378 

genes associated with all three global connectopies were selected. Non-negative 379 

matrix factorization was used to derive the gene expression components for each 380 

macrostructure in the brain. 381 

The filtered genes extending across the three global connectopies were also 382 

submitted to gene ontology enrichment analysis. ToppGene 383 

(https://toppgene.cchmc.org/), which contains the complete list of AHBA genes as the 384 

background gene set, was used to conduct the analysis. The following term 385 

categories were assessed: GO: Molecular Function, GO: Biological Process, GO: 386 

Cellular Component, Pathway, and Disease. 387 

Replication and robustness analyses 388 

Replication with CHCP dataset We randomly selected 100 age-matched subjects 389 

(59 males; mean age, 24.31±2.35; age range, 22-35) from the Chinese Human 390 

Connectome Project (CHCP) dataset (Ge et al., 2023). All subjects provided written 391 
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informed consent, and the protocol was approved by the Institutional Review Board 392 

at Peking University. 393 

The scanning procedures and acquisition parameters were detailed in previous 394 

publications (Ge et al., 2023). In brief, T1w images were acquired on a 3T Siemens 395 

Prisma scanner with the following parameters: TR = 2400 ms, TE = 2.22 ms, flip 396 

angle = 8°, FOV = 256×240 mm2, voxel size = 0.8 mm isotropic. Diffusion data were 397 

acquired with the following parameters: TR = 3500 ms, TE = 86 ms, flip angle = 90°, 398 

FOV = 210×210 mm), voxel size = 1.5 mm isotropic, 14 baseline images at b = 0, 93 399 

diffusion-weighted images at b = 1000 s/mm2, and 92 diffusion-weighted images at 400 

b = 2000 s/mm2. 401 

The structural and diffusion data from the CHCP dataset were preprocessed with 402 

HCP’s minimal preprocessing pipeline (Glasser et al., 2013), which was consistent 403 

with the HCP dataset. We repeated the procedure of construction of global 404 

connectopies on the CHCP dataset and compared the similarity with GCs in the HCP 405 

dataset. 406 

Examine the confound effect Complementing our main analysis on calculating 407 

global connectopies, we examined the effect that may be caused by age, sex, and 408 

brain size. For age, we divided subjects into three groups (age 20-25: n = 17; age 25-409 

30: n = 40; age 30-35: n = 43). For sex, we divided the subjects into males (n = 46) 410 

and females (n = 54). For brain size, we extracted each HCP subject's total 411 

intracranial volume (TIV) from the FreeSurfer output. Moreover, we divided into five 412 

groups (TIV 1.0-1.2: n = 3; TIV 1.2-1.4: n = 12; TIV 1.4-1.6: n = 38; TIV 1.6-1.8: n = 413 
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40; TIV 1.8-2.0: n = 7; [*106 mm3]). We calculated the correlation of the tractogram 414 

covariance matrix between groups. 415 

Examine the distance and geometry effect. We derived the geodesic distance 416 

matrices on the mid-thickness surface of the human brain, calculated the gradients, 417 

and computed the correlation with global connectopies to test the effect of geodesic 418 

distance. We also remove short-range connections in the tractogram covariance 419 

matrices. We removed the value if the geodesic distance of the two vertices was less 420 

than 10mm, 20mm, and 30mm, respectively, and calculated the global connectopies 421 

again. 422 

 We further followed the procedure from a previous study to obtain the cortical 423 

geometric eigenmodes (Pang et al., 2023). In brief, because the brain structure can 424 

be approximated as being constant in time, the resulting spatial and temporal 425 

dynamics can be treated separately via eigenmode decomposition. In particular, the 426 

spatial aspect satisfies the Laplacian eigenvalue problem, which is also known as the 427 

Helmholtz equation, defined in the following equation, 428 

∆≔
1
𝑊

∑
𝜕

𝜕𝑥𝑖
𝑖,𝑗

(𝑔𝑖𝑗𝑊
𝜕

𝜕𝑥𝑗
 ) 429 

where 𝑥𝑖, 𝑥𝑖 are the local coordinates, 𝑔𝑖𝑗 is the inverse of the inner product metric 430 

tensor 𝑔𝑖𝑗 ≔<
𝜕

𝜕𝑥𝑖
,

𝜕

𝜕𝑥𝑖
>, 𝑊 ≔ √det (𝐺), 𝑑𝑒𝑡 denoted the determinant, and 𝐺 ≔431 

(𝑔𝑖𝑗). 432 

 We derived the geometric eigenmodes of the cortical surfaces by solving the 433 

eigen-decomposition problem 𝛥𝑈 = 𝑈Λ, where 𝑈 is composed of eigenvectors 434 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 Page 24 of 55 

𝑢𝑖and the corresponding eigenvalue 𝜆𝑖. Specifically, we used a triangular surface 435 

mesh representation of the gray-white matter interface cortical surface, comprising 436 

32,492 vertices in each hemisphere. The surface used for the HCP analysis was 437 

from the published version 438 

(https://github.com/ThomasYeoLab/CBIG/tree/master/data/templates/surface/fs_LR_439 

32k). Since the first eigenmode presents a constant pattern on the surface, we 440 

compared the following geometric eigenmodes with three GCs. 441 

  442 
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Results 443 

Three global connectopies in the human brain 444 

To explore how the spatial organization of the human brain is shaped by the 445 

underlying structural connections within the white matter, we characterized the global 446 

connectopies across the whole brain. We first built a vertex-wise similarity matrix of 447 

structural connectivity using 100 unrelated subjects from the Human Connectome 448 

Project dataset (Van Essen et al., 2013). Specifically, structural connectivity profiles 449 

were obtained from probabilistic tractography along approximately 30k vertices for 450 

each hemisphere and were correlated between each pair of vertices. Tractogram 451 

covariance (TC) matrices were thresholded at 0 and averaged across subjects. In 452 

short, the TC matrix captured structural connectivity similarity across the whole brain. 453 

We implemented diffusion embedding on the TC matrix, a manifold learning 454 

method previously used to capture functional gradients (Coifman et al., 2006). The 455 

resultant components revealed the position of vertices along the axes with the most 456 

dominant differences in the given structural connectivity profile. The first three global 457 

connectopies separately showed dorsoventral, rostrocaudal, and mediolateral 458 

patterns and together accounted for 33% of the total variance (Figure 2a). 459 

More specifically, the first global connectopy (Global connectopy 1 dorsoventral, 460 

GC1-DV), following a dorsoventral pattern, was anchored at one end by the occipital, 461 

inferior temporal, and orbitofrontal cortex and at the other end by the sensorimotor 462 

cortex. The second global connectopy (Global connectopy 2 rostrocaudal, GC2-RC) 463 
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varied along a rostrocaudal axis, radiating from the occipitoparietal cortex and ending 464 

in the prefrontal cortex. The third global connectopy (Global connectopy 3 465 

mediolateral, GC3-ML) showed a mediolateral pattern, with the highest expression in 466 

the lateral temporal and prefrontal cortex and the lowest in the cingulate cortex 467 

(Figure 2a). 468 

These patterns were stable regardless of the number of subjects considered 469 

(Figure 2-1) and were not affected by age, sex, or brain size (Figure 2-2). The 470 

findings were consistent in a replication sample from the Chinese Human 471 

Connectome Project dataset (n = 100; Figure 2-3) (Ge et al., 2023). Individual global 472 

connectopies were computed for each subject and aligned to the group GC with 473 

Procrustes rotation, allowing for individual comparison. The individual GCs were 474 

highly correlated with the group GC (all r > 0.9; Figure 2-4). To reduce the influence 475 

of noise, we used Schaefer-400 parcellation (Schaefer et al., 2018) to calculate ROI-476 

wise global connectopies. The results showed that the first three gradients 477 

corresponded to the three vertex-wise global connectopies (Figure 2-5). We further 478 

showed that global connectopies are beyond geodesic distance and cortical 479 

geometry (Figure S2-6, 2-7) and demonstrated the role of long-range connections in 480 

the formation of global connectopies (Figure 2-8). These results showed that global 481 

connectopies were not simply the result of spatial autocorrelation. 482 
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The three connectopies are situated by distinct sets of white matter tracts 483 

We further explored how the underlying white matter shaped these spatial 484 

organizations. We fitted general linear models (GLMs) to interpolate measures from 485 

the gray matter into the white matter (Tarun et al., 2020). Specifically, we used the 486 

global connectopies as the dependent variable and the structural connection matrix 487 

as the independent variable, thus projecting each global connectopy onto the white 488 

matter (Figure 2-9). For GC1-DV, the white matter voxels were distributed along the 489 

dorsal-ventral axis beneath the surface. Specifically, voxels near the sensorimotor 490 

cortex and occipitotemporal cortex showed values that were markedly consistent with 491 

the locations of the extremes of the first global connectopy. Voxels corresponding to 492 

GC2-RC and GC3-ML varied from posterior to anterior and medial to lateral. 493 

We then focused on the specific tracts related to the emergence of the global 494 

connectopies. We reconstructed 72 fiber bundles following TractSeg (Wasserthal et 495 

al., 2018) (Table 2-1) and built group-level connectivity blueprints (Mars et al., 2018), 496 

where the rows revealed the cortical termination patterns of the tracts. We first 497 

extracted the projection on the surface of each tract and calculated the mean value 498 

and variance of connectopy values of the tract projection on the surface (Figure 2b). 499 

We identified the tracts that were either situated at one of the extremes of the global 500 

connectopy or were spread out along the axis. The results for the bilateral tracts were 501 

averaged between the two hemispheres and are shown in the scatterplot (Figure 2b; 502 

detailed values are shown in Figure 2-10). 503 
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Two types of characteristic tracts are shown in the right columns of Figure 2b, 504 

including the thalamo-precentral tract (T_PREC), striato-occipital tract (ST_OCC), 505 

and thalamo-parietal tract (T_PAR) for GC1-DV as well as the middle longitudinal 506 

fascicle (MLF), thalamo-prefrontal tract (T_PREF), superior longitudinal fascicle II 507 

(SLF_II) for GC2-RC, along with the arcuate fascicle (AF), cingulum (CG), and MLF 508 

for GC3-ML. 509 

For GC1-DV, T_PREC, which connects the thalamus with the precentral gyrus, 510 

is related to motor task performance (Strick, 1986). T_PREC has a distinctly vertical 511 

expanding shape and showed high mean values near the dorsal end of GC1-DV, 512 

expressing the most significant contribution to the global connectopy. ST_OCC 513 

connects the striatum with the occipital cortex, showing high mean values at the 514 

ventral end and having a "stretching" impact on the global connectopy pattern. In 515 

contrast, T_PAR has a high variance within GC1-DV and appears to constrain the 516 

global connectopy formation. 517 

For GC2-RC, the second branch of the superior longitudinal fascicle, which 518 

mostly runs from the posterior to the anterior, starting from the middle frontal gyrus 519 

and terminating in the angular gyrus, had the greatest mean value for the white 520 

matter tract. The SLF_II, which covered most of the areas in the second global 521 

connectopy, also showed high values, providing the prefrontal cortex with parietal 522 

cortex information about the perception of visual space and providing information 523 

about working memory in the prefrontal cortex to the parietal cortex to focus spatial 524 

attention and regulate the selection of spatial information (Janelle et al., 2022). Other 525 
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"high-contribution" tracts, including the MLF and T_PREF, are located either in the 526 

anterior or posterior regions. 527 

The GC3-ML showed a similar pattern to the tracts that made high contributions. 528 

The corpus callosum, the giant white matter fiber bundle consisting of millions of 529 

axonal projections, spans from the medial brain through different parts of the cortex 530 

and connects all the brain lobes. Thalamo- and striato-cortical projections also 531 

extend from the subcortical nuclei to reach different lateral cortices. We suggest that 532 

the former type of tract plays a role in stretching the brain along the axis, while the 533 

latter type has a constraining effect, and that these work together to shape the 534 

organization of the brain. 535 

Global connectopies provide a large-scale descriptor of arealization 536 

To inspect the global connectopies as a unit, we normalized three connectopy values 537 

at each vertex to generate RGB values and mapped them on the surface to make 538 

lobes or subregions visible distinctly (Figure 3a). We termed this map the global 539 

connectopic space, which quantified the topography of the dominant global 540 

connectopy. The cortex, shown in red, green, and blue, indicates the individual 541 

regions dominated by each global connectopy. Regions dominated by a combination 542 

of more than one global connectopy were represented in different colors, e.g., the 543 

"yellow" region was dominated by the first and second global connectopies together, 544 

as shown in the cube in Figure 3a. 545 
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We then plotted every pair of global connectopies in a 2D space and assigned 546 

colors based on the global connectopic space in Figure 3a. The first and second 547 

global connectopies interacted to split the whole brain into the prefrontal cortex and 548 

limbic cortex, sensorimotor cortex, and occipitotemporal cortex (Figure 3b). Similarly, 549 

the frontal cortex, limbic cortex, and occipitotemporal cortex were shown when the 550 

first and third global connectopies were considered together (Figure 3b). The 551 

prefrontal cortex, limbic cortex, and others were shown when the second and third 552 

connectopies were combined (Figure 3b). The three GCs were also plotted together 553 

in 3D space, with vertices assigned different colors according to the signs of the 554 

three axes (Figure 3b, right). 555 

In order to show the modules clearly in the global connectopic space, we 556 

partitioned the brain by hierarchical clustering using the three global connectopies 557 

(Figure 3c). At the first level, the brain was partitioned into two modules based on the 558 

positive and negative signs of the first global connectopy. These two modules 559 

coincided with the division between the dorsal and ventral brain regions. Each 560 

module was further partitioned into two modules at each level by the sign of the 561 

global connectopies. The rostrocaudal and mediolateral patterns emerged after 562 

considering the corresponding global connectopy. In the end, eight modules were 563 

captured: the ventral and dorsal somatomotor cortex, lateral prefrontal cortex, 564 

cingulate gyrus, lateral temporal cortex + angular gyrus, medial occipital cortex + 565 

occipital polar cortex, orbitofrontal cortex, and ventromedial prefrontal cortex + 566 

posterior cingulate cortex (Figure 3c). Note that the parcellation guided by the three 567 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 Page 31 of 55 

global connectopies is very coarse compared with several fine-grained brain atlases 568 

that have been delineated using the gradient approach (Gordon et al., 2016; 569 

Schaefer et al., 2018). We did not utilize these more fine-grained parcels because we 570 

believe they are more likely to be shaped by local gradients compared with the three 571 

global connectopies, which characterize the global pattern across the brain. 572 

Potential genetic basis underlying global connectopies 573 

Having established the global connectopies in the human brain, we first explored the 574 

relationship between the genetic influence on cortical morphology and the identified 575 

global connectopies. We estimated the pairwise genetic correlation between vertices 576 

on the cortex by fitting a bivariate ACE model, which revealed shared genetic 577 

influences on cortical thickness and relative area expansion between cortical 578 

vertices. The resultant genetic correlation matrix represented the genetic correlation 579 

decomposed from the total phenotypic correlation between the two cortical vertices. 580 

The first three gradients decomposed from the genetic correlation matrix of cortical 581 

thickness showed a rostral-caudal axis, a medial-lateral axis, and a dorsal-ventral 582 

axis, respectively (left: rGC1-DV, GG3-Thickness = 0.72, pspin < .0028, FDR corrected; rGC2-RC, 583 

GG1-Thickness = 0.91, pspin < .0001, FDR corrected; rGC3-ML, GG2-Thickness = 0.72, pspin < .0041, 584 

FDR corrected; right: rGC1-DV, GG3-Thickness = 0.73, pspin < .0044, FDR corrected; rGC2-RC, 585 

GG1-Thickness = 0.88, pspin < .0098, FDR corrected; rGC3-ML, GG2-Thickness = 0.71, pspin < .1566, 586 

FDR corrected; Figure 4a, 4b). The first three gradients decomposed from the 587 

genetic correlation matrix of the surface area correspond with the three global 588 

connectopies (left: rGC1-DV, GG1-Area = 0.53, pspin < .1630; rGC2-RC, GG2- Area = 0.49, pspin < 589 
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.0006, FDR corrected; rGC3-ML, GG3- Area = 0.51, pspin < .1031; right: rGC1-DV, GG1-Area = 0.58, 590 

pspin < .2131; rGC2-RC, GG2- Area = 0.46, pspin < .0177; rGC3-ML, GG3- Area = 0.51, pspin < .0812; 591 

Figure 4-1). We replicated the global connectopies using twin data from the HCP and 592 

found they show high similarity with the results derived from unrelated subjects (left: 593 

rG1-DV = 0.99, rG2-RC = 0.99, rG3-ML = 0.99; right: rG1-DV = 0.99, rG2-RC = 0.98, rG3-ML = 0.98; 594 

Figure 4-2). Each parcel derived from the fuzzy clustering of the genetic correlation 595 

matrix of cortical thickness (Chen et al., 2012) also showed significant overlap with 596 

one of the four parcels derived from the hierarchical clustering identified using the 597 

global connectopies (Figure 4c, Figure 4-3a, b and Figure 4-4a, b). The overlap 598 

between parcels derived from the hierarchical clustering and parcels from the genetic 599 

correlation of surface area is additionally shown in Figure 4-3c, d and Figure 4-4c, d. 600 

These significant correspondence levels indicated a close genetic relatedness of the 601 

global connectopies. 602 

Since the morphogen gradients have been established and their pattern was 603 

conserved during the development (Vogel et al., 2024), we explored whether these 604 

genetic patterns correspond with those of the structural connectivity. We first 605 

identified the morphogen genes in AHBA data according to a previous publication 606 

(Rakic et al., 2009). These genes exhibited high differential stability across 607 

individuals, with 80% of morphogen genes located in the top half of DS genes (ΔBR > 608 

0.5284; Table 5-1), suggesting their involvement in common functionality and 609 

dysfunctionality in human brains (Hawrylycz et al., 2015). We subdivided the 610 

connectopies equally into ten parts. Two sample t-tests were used to assess the 611 
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difference in gene expression of these genes between the first and the last bins. We 612 

found that the expression of FGF17 was significantly higher in the dorsal cluster than 613 

in the ventral cluster (t = 27, p < .001), while the expression of FOXG1 was 614 

significantly higher in the ventral cluster (t = -25, p < .001). The same opposite 615 

patterns were observed between FGF8 (rostral < caudal, t = -33, p < .001) and PAX6 616 

(rostral > caudal, t = 29, p < .001), and between SFRP1 (medial < lateral, t = -41, p < 617 

.001) and WNT3 (medial > lateral, t = 99, p < .001; Figure 5a). The number of 618 

subdivisions does not affect the final results (Figure 5-1). 619 

The above analyses showed a genetic association with morphogen axes in the 620 

developing brain. Next, we investigated whether the directional gradients of gene 621 

expression in the adult human brain, i.e., spatiomolecular gradients (Vogel et al., 622 

2024), correlate with global connectopies. The spatiomolecular gradients delineated 623 

the topographic variation of gene expression spanning the adult human brain and 624 

were reported to capture previously identified rostral-caudal, dorsal-ventral, and 625 

medial-lateral axes of early developmental patterning (Vogel et al., 2024). We 626 

showed that the three global connectopies had significant correlations with the 627 

spatiomolecular gradients (rGC1-DV, LV1 = 0.74, pspin < .0060, FDR corrected; rGC2-RC, LV2 628 

= 0.75, pspin < .0012, FDR corrected; rGC3-ML, LV3 = 0.5, pspin < .0233, FDR corrected; 629 

Figure 5b). Note that the gradient values for the subcortex, cerebellum, and 630 

brainstem were excluded, and only data for the cortex were considered. Since the 631 

LV3 gradient showed the most variation and varied along a mediolateral and 632 

dorsoventral direction, as mentioned previously (Vogel et al., 2024), the r-value was 633 
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lower compared with the former two but still significant, and the correlation between 634 

the first global connectopy was also moderate (rGC1-DV, LV3 = -0.36, pspin < .05). These 635 

findings again suggested a potential genetic basis underlying the global 636 

connectopies. 637 

Finally, we explored the roles of genes that contributed to the global 638 

connectopies. We used partial least squares regression (PLSR) on the AHBA data 639 

and filtered the genes with the top 5% weight for each global connectopy after 1000 640 

times bootstrapping (corrected for multiple comparisons). We found that a selection 641 

of genes contributed to more than one global connectopy, with 22 genes overlapping 642 

with all three (Figure 6a, right). All significantly associated genes overlapped with 643 

known morphogenetic genes identified previously (Rakic et al., 2009) 644 

(hypergeometric test, p < .001; Figure 6b, right). The top genes in each global 645 

connectopy, such as FARSA, MPND, SYCP2, CUX1, ARHGDIG, and NUDT14, are 646 

known to be associated with the regulation of transcription factor activity, 647 

morphogenesis, cell proliferation, and metabolic processes (Figure 6b) (Adra et al., 648 

1998; Yang et al., 2006; Zhu et al., 2007; Sansregret and Nepveu, 2008; Heyen et 649 

al., 2009; Arikkath, 2012; Krenke et al., 2019), while genes related to all three global 650 

connectopies, including ADAMTSL1 and TIAM1, showed an obvious connection with 651 

various diseases (Figure 6b) (Hendee et al., 2017; Lu et al., 2022; Ru et al., 2022). 652 

This finding is consistent with the observation that disruptions in forming early 653 

developmental gradients through mutations to gradient-associated genes can cause 654 

severe developmental disorders (Flores-Sarnat and Sarnat, 2008; Vogel et al., 2024). 655 
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We found these genes to be significantly enriched in radial glial cells in prenatal 656 

samples (Figure 6c, left) and enriched in excitatory neurons after birth (Figure 6c, 657 

right). This was verified by the developmental pattern of these genes provided by all 658 

time points in the BrainSpan dataset (Miller et al., 2014), which showed that they 659 

were highly expressed in the prenatal period in all lobes and that their expression 660 

decreased after birth (Figure 6d), suggesting that the patterns present in adulthood 661 

were nearly established in the early stages of development. Digging deeper into 662 

specific biological processes, the gene ontology enrichment analysis showed that 663 

these genes were related to the regulation of transcription, metabolic process, 664 

morphogenesis, cellular development, and neuron projection (Figure 6e). 665 

  666 
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Discussion 667 

In the current study, we demonstrated that a low-dimensional, topological 668 

representation of brain connectivity exists and may share common space with gene 669 

expression, despite the significant disparity in the numbers of genes and 670 

connections. We systematically analyzed the spatial topography of cerebral 671 

connectivity, i.e., the white matter tractogram, and identified three orthogonal global 672 

connectopies: the dorsoventral, rostrocaudal, and mediolateral connectopies across 673 

the cerebral cortex, which are represented in the spatial arrangement of long-range 674 

white matter tracts. Moreover, the global connectopies were observed to align with 675 

the gradients of morphogens identified during embryonic brain development and with 676 

genetic topography and spatiomolecular gradients. Our findings demonstrate the 677 

crucial role that comprehending the connectivity topographies and their genetic 678 

constraints plays in understanding the underlying principles that shape human brain 679 

organization. 680 

The three orthogonal global connectopies derived from the white matter closely 681 

resemble the principal axes of brain development (Takahashi et al., 2012; Vogel et 682 

al., 2024) and the chemotactic gradients of early embryogenesis (Van Haastert and 683 

Devreotes, 2004; Wu, 2005). From a developmental perspective, both the encoding 684 

of chemical gradients by morphogens and the spatial expression patterns of all 685 

genes during the formation of the mature brain, along with recent research on 686 

phenotypic mapping facilitated by twin studies (Chen et al., 2011; Chen et al., 2012; 687 

Chen et al., 2013), indicate that gradient-based organizational principles may serve 688 
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as one of the fundamental rules in the precise formation of gene-encoded 689 

connections and the establishment of functional cortical regions. Indeed, genes 690 

provide the initial blueprint that guides differentiation and the directional migration of 691 

neurons through the subsequent formation of different types of gradients of 692 

morphogens, and, in parallel, the precise trajectory and projection of axons (Kast and 693 

Levitt, 2019). Given the significant disparity in the numbers of genes and 694 

connections, genes might not drive the precise details of complex circuit diagrams 695 

but have the potential to influence their organizational rules by enacting pattern 696 

formation rules to increase the probability that neurons make the correct connections 697 

(Hassan and Hiesinger, 2015; Langen et al., 2015). This simple genetic rule may 698 

underpin the global connectome organization, consistent with the argument that 699 

anatomical connections could characterize the arealization and show consistency 700 

with cortical patterns driven by genetic profiles (Cui et al., 2016; Fan et al., 2016; 701 

Fan, 2021). 702 

Interestingly, the high correspondence between modules identified using global 703 

connectopies and those obtained from genetic topographies (Chen et al., 2013) may 704 

also provide evidence for the role of connections in the initial scaffolding for cortical 705 

organization. Previous research found that cortical patterning creates segregated 706 

areas with different functions via cell differentiation and migration, specifically 707 

occurring along molecular gradients representing the patterned expression of 708 

morphogens and transcription factors (Sansom and Livesey, 2009; Cadwell et al., 709 

2019), which were found to radiate along the rostrocaudal, dorsoventral, and 710 
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mediolateral axes of the neural compartment (Hoch et al., 2009). These patterns are 711 

conserved to maturity (Vogel et al., 2024) and are consistent with our global 712 

connectopies, suggesting a relatively conserved role of genetic profiles in shaping 713 

brain organization. Meanwhile, we are proposing an immediate goal to explore the 714 

structural connectional basis underlying shifts in macroscale functional organization 715 

during development (Dong et al., 2021; Dong et al., 2024). 716 

Another verification warranted in future work is the conservation or changes of 717 

global connectopies across species, as the phylogenetically conserved 718 

spatiomolecular gradients resemble the similar pattern of genetically encoded 719 

signaling pathways and macrostructural organization in various species (Valk et al., 720 

2020; Vogel et al., 2024). A consistent phenomenon of structural connectivity 721 

organization across species would provide supporting evidence for overall 722 

neuroanatomical similarity, suggesting a basic organizing principle within genetic and 723 

connectivity profiles throughout evolution. This is of great significance to the deep 724 

exploration of neurodevelopment in humans and non-human animals, which could be 725 

integrated into the characterization of genetic and connectional topological patterns 726 

at the macro level. 727 

Under the effect of morphogens secreted in the patterning centers with absolute 728 

positional information, numerous transcription factors are expressed in a graded 729 

manner. For example, the anterior expression of FGF8 suppresses the posteriorly 730 

expressed transcription factors, resulting in their lower anterior but higher posterior 731 

expression (Storm et al., 2006). Similarly, manipulation of EMX2 by genetic knockout 732 
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resulted in higher expression posteromedially and lower expression anterolaterally, 733 

which caused an expansion of the frontal and lateral regions at the expense of the 734 

visual cortex in mice (Hamasaki et al., 2004). These transcription factors are believed 735 

to determine the areal fate and expression of cell-surface molecules, thus 736 

determining the topographic organization of synaptic inputs and outputs (Rubenstein 737 

and Rakic, 1999; Chen et al., 2013) and directing axonal outgrowth (Chilton, 2006). 738 

They significantly overlapped with the genes related to the identified global 739 

connectopies, which exhibited distinct developmental patterns and especially 740 

enriched in radial glial cells in the prenatal period. According to the radial unit 741 

hypothesis of cortical development, radial glial cells in the embryonic brain facilitate 742 

the generation, placement, and allocation of neurons in the cortex and regulate how 743 

they wire up, by acting as a "highway" for axons to facilitate growth and ensuring 744 

proper trajectories (Nowakowski et al., 2016; Casingal et al., 2022), during which 745 

complex molecular interactions between axons and recipient cortical areas may be 746 

involved (Kast and Levitt, 2019). 747 

Exploration of the white matter associated with the global connectopies is 748 

marked by the important influences exerted by older brain structures in cortical 749 

development and arealization. The thalamo- and striato-cortical projections 750 

contributed to the formation of structural organization patterns, especially the first 751 

principal component, which varied along the same axis as the functionally distinct 752 

dorsal-ventral systems that evolved from two primordial brain structures, following the 753 

dual origin theory (Giaccio, 2006; Pandya et al., 2015). As an important mediator of 754 
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sensory experience, the thalamus accelerates initial synaptic plasticity and forms 755 

direct topographic projections to cortical areas during development, thus influencing 756 

regional differentiation of the neocortex (Molnar and Blakemore, 1995; Park et al., 757 

2024). Moreover, another early brain structure, the brainstem, sends ascending 758 

neural projections to the developing cortex and also routes sensory input to 759 

corresponding brain areas, helping shape anatomical development (Fritzsch et al., 760 

2022). The brainstem houses key neuromodulatory systems, including the 761 

noradrenergic, serotonergic, and dopaminergic systems. These systems play a 762 

crucial role in influencing cortical plasticity and connectivity. Ultimately, they 763 

contribute to the functional differentiation of cortical areas (Taylor et al., 2022; Shine, 764 

2023). 765 

Several technical and methodological limitations must be acknowledged in the 766 

current work. The first and most direct concern is the accuracy of mapping structural 767 

connections using diffusion tensor imaging. However, diffusion tractography has 768 

been used as an irreplaceable tool to identify white matter across the brain in vivo 769 

and non-invasively, with certain limitations imposed by the tractography which can 770 

cause false positive results (Maier-Hein et al., 2017). In the future, joint MRI and 771 

microscopy data analysis may help address these limitations (Huang et al., 2021; 772 

Axer and Amunts, 2022; Howard et al., 2023). Distance and geometry effects also 773 

need to be considered when mapping the structural connectivity pattern. Still, the 774 

consistency between genetic topography and global connectopies suggests that our 775 

findings are not simply due to spatial autocorrelation. Although the association 776 
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between cortical geometry and brain function should be recognized (Pang et al., 777 

2023), the interaction of structural connectivity and cortical geometry deserves further 778 

attention to reveal the function realization of the developing human brain, especially 779 

the neonate brain (Dubois et al., 2014). The underlying genetic drivers should also be 780 

considered to explore the causal relationship between them by animal studies, which 781 

will reduce the impact of mismatch of ages and other factors resulting from relating 782 

HCP young adult diffusion MRI connectopies to AHBA-based gene expression 783 

information. Although the AHBA is the densest sample transcriptomic dataset of the 784 

human brain to date, it comes with the limitations mentioned above, as well as the 785 

gap between post-mortem changes in gene expression level and in vivo features, 786 

making our results a matter of caution. With the development of RNA sequencing 787 

technology, which enables rapid profiling and deep investigation of the transcriptome, 788 

more genes could be detected and provide valuable information (Wang et al., 2009). 789 

In addition, the observed organizing principles in the current work may also be used 790 

to guide the engineering of three-dimensional cortical spheroids and to comprehend 791 

the human-specific aspects of the neural circuit assembly (Sloan et al., 2018; Miura 792 

et al., 2022). 793 

To conclude, we explored how genes link the accurate formation of connections 794 

despite significant differences in their numbers. Our findings revealed the existence 795 

of a low-dimensional, topological representation of brain connectivity that may share 796 

a common space with gene expression, providing a consistent characterization of 797 
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cortical arealization. We hope our discoveries will offer valuable insights into studying 798 

brain structure and function. 799 

  800 
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Data availability 801 

Data from the Human Connectome Project can be downloaded at 802 

https://db.humanconnectome.org/. Data from the Chinese Human Connectome 803 

Project can be downloaded at  https://www.Chinese-HCP.cn. The human gene 804 

expression data are available in the Allen Brain Atlas (https://human.brain-805 

map.org/static/download). Data from BrainSpan can be downloaded at 806 

https://www.brainspan.org/. 807 

 808 

Code availability 809 

The HCP pipeline can be found at https://github.com/Washington-810 

University/HCPpipelines. The neuroimaging preprocessing software used for the 811 

other datasets is freely available (FreeSurfer v6.0, 812 

http://surfer.nmr.mgh.harvard.edu/, and FSL v6.0.5, 813 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The gene processing pipeline is available 814 

(abagen, https://github.com/rmarkello/abagen), and gene enrichment analysis is 815 

conducted at https://toppgene.cchmc.org/. The cell-type enrichment analysis process 816 

was conducted at http://www.cellgo.world. The brain maps were presented using 817 

BrainSpace (https://brainspace.readthedocs.io/) and Connectome Workbench v1.5.0 818 

(https://www.humanconnectome.org/software/connectome-workbench). The tracts 819 

were visualized using BrainNet Viewer v1.7 (https://www.nitrc.org/projects/bnv/). 820 
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Python code to reproduce the analyses and figures is available at 821 

https://github.com/FANLabCASIA/GC.git (will make this public upon acceptance). 822 
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Figures 1115 

Figure 1. Overview of the analysis pipeline. We investigated the hypothesis 1116 

that the existence of a common space is shared by brain connectivity and 1117 

genetic profiles. (a) The construction of global connectopies (GCs). White matter 1118 

tractograms were calculated to generate a similarity matrix, i.e., a tractogram 1119 

covariance (TC) matrix. Diffusion map embedding was implemented on the TC 1120 

matrix, resulting in low-dimensional gradients. (b) Biological interpretation of the 1121 

GCs. White matter bundles contributing to the GCs were analyzed (top panel). Global 1122 

connectopies were demonstrated to provide a large-scale descriptor of cortical 1123 

cartography, which may give insight into cortical parcellation (Fan et al., 2016). (c) 1124 

Topographic axes of genetic profiles. We demonstrated a correspondence between 1125 

the genetic influence on cortical morphology and global connectopies. We 1126 

established that the three global connectopies are consistent with morphogen 1127 

gradients in the developing brain and spatiomolecular gradients in adulthood and 1128 

provided evidence that specific genes drive the formation of the cortical organization. 1129 

(d) Annotation of GCs-associated genes. Genes associated with the GCs were 1130 

identified and submitted to enrichment and development analyses. 1131 

Figure 2. The three global connectopies and the white matter tracts contribute 1132 

to the GCs. (a) The first three global connectopies run dorsoventrally, rostrocaudally, 1133 

and mediolaterally and are termed GC1-DV, GC2-RC, and GC3-ML, respectively. 1134 

These patterns are stable along subjects (Figure 2-1) and are not affected by age, 1135 

sex, or brain size (Figure 2-2). An independent experience was also applied on 1136 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 Page 52 of 55 

CHCP dataset (Figure 2-3). Moreover, these three patterns are highly reproducible 1137 

between individuals (Figure 2-4), and can be reproduced in ROI-wise (Figure 2-5). 1138 

The GCs are beyond geodesic distance and cortical geometry (Figure S2-6, 2-7) and 1139 

demonstrated the role of long-range connections in the formation of global 1140 

connectopies (Figure 2-8). (b) The three global connectopies are projected onto the 1141 

white matter (Figure 2-9), and are situated by distinct sets of white matter tracts. The 1142 

white matter tracts were reconstructed by TractSeg (Table 2-1). Mean values and 1143 

variances of the contributions of five types of tracts to the global connectopies are 1144 

shown. The numerical values are showed in Figure 2-10. Each dot represents one 1145 

tract. Different colors represent different types of tracts, with deeper colors indicating 1146 

higher contributions. The two right columns show two types of characteristic tracts 1147 

contributing to the global connectopies, with one type of tract situated at one extreme 1148 

of the global connectopy while the other stretching across the global connectopy. The 1149 

first column shows the cortical projection on the surface of the tract, and the second 1150 

shows the corresponding fiber bundles reconstructed by TractSeg. See Table 2-1 1151 

and Figure 2-1to Figure 2-10 for more details. 1152 

Figure 3. Global connectopies provide a large-scale descriptor of arealization. 1153 

(a) The three global connectopies were plotted together in what we termed the global 1154 

connectopic space, with connectopy values assigned to the RGB values at each 1155 

vertex. The global connectopic space integrates the information of the three global 1156 

connectopies and quantifies the topography of the dominant global connectopy. (b) 1157 

Left: Several lobes or subregions clearly appear when every two global connectopies 1158 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 Page 53 of 55 

are plotted together in 2D space, with the extremes of the GCs clearly and 1159 

continuously shown. GC1-DV and GC2-RC split the cortex into the prefrontal cortex 1160 

and limbic cortex, sensorimotor cortex, and occipitotemporal cortex. GC1-DV and 1161 

GC3-ML split the cortex into the frontal cortex, limbic cortex, and occipitotemporal 1162 

cortex. GC2-RC and GC3-ML split the cortex into the prefrontal cortex, limbic cortex, 1163 

and other regions. Right: The three GCs were plotted together in 3D space. Vertices 1164 

were assigned different colors according to the signs of the three axes. (c) Modules 1165 

identified by hierarchical clustering using the three global connectopies. At each 1166 

level, the brain was partitioned into two modules according to the positive and 1167 

negative signs of the global connectopy. Eight modules, including lobes or functional 1168 

networks, emerged clearly. vSomaMot ventral somatomotor cortex, dSomaMot 1169 

dorsal somatomotor cortex, lPFC lateral prefrontal cortex, CG cingulate gyrus, lTC 1170 

lateral temporal cortex, AG angular gyrus, mOC medial occipital cortex, OPC 1171 

occipital polar cortex, OFC orbitofrontal cortex, vmPFC ventromedial prefrontal 1172 

cortex, PCC posterior cingulate cortex. 1173 

Figure 4. Global connectopies correspond to genetic topography. (a) The first 1174 

three gradients of genetic similarity of cortical thickness. The genetic similarity matrix 1175 

was calculated by fitting bivariate ACE models to compute the genetic correlations of 1176 

cortical thickness between two vertices in a twin dataset (Figure 4-1). (b) The three 1177 

gradients of genetic similarity of cortical thickness show a high correlation with global 1178 

connectopies (rGC1-DV, GG3-Thickness = 0.72, pspin < .0028, FDR corrected; rGC2-RC, GG1-1179 

Thickness = 0.91, pspin < .0001, FDR corrected; rGC3-ML, GG2-Thickness = 0.72, pspin < .0041, 1180 
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FDR corrected). The global connectopies can be replicated by twin data (Figure 4-2). 1181 

(c) Overlap between four modules derived from hierarchical clustering and genetic 1182 

patterning of cortical thickness. Four-cluster genetic patterning was obtained by 1183 

performing fuzzy clustering on the genetic similarity matrix, which corresponds to 1184 

well-known brain regions (Figure 4-3, Figure 4-4). *** p < .001, ** p < .01, * p < .05. 1185 

See Figure 4-1 to Figure 4-4 for more details. 1186 

Figure 5. Consistency between global connectopies and morphogen gradients 1187 

and spatiomolecular gradients. (a) The expression of morphogen genes which 1188 

mostly exhibited high differential stability across individuals (Table 5-1) and followed 1189 

the same pattern as any of the three global connectopies was significantly different 1190 

between the two ends of the global connectopies (two-sample t-test, all p < .001). 1191 

The number of subdivisions does not affect the final results (Figure 5-1). (b) The 1192 

global connectopies significantly correlated with the spatiomolecular gradients, which 1193 

maintained the same pattern as morphogenetic gradients during development (rGC1-1194 

DV, LV1 = 0.74, pspin < .0060, FDR corrected; rGC2-RC, LV2 = 0.75, pspin < .0012, FDR 1195 

corrected; rGC3-ML, LV3 = 0.5, pspin < .0233, FDR corrected). *** p < .001. See Table 5-1 1196 

and Figure 5-1 for more details. 1197 

Figure 6. Gene enrichment analysis of connectopy-associated genes. (a) 1198 

Distributions of connectopic weights across genes. Genes in the top 0.83% of either 1199 

tail of the distribution (n = 130) were selected for further enrichment analysis. The 1200 

Venn diagram showing the overlap of genes is shown on the right. (b) Top genes for 1201 

unique connectopy and overlap of connectopies. (c) Cell type enrichment analysis 1202 
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was conducted on genes belonging to each GC using prenatal and postnatal 1203 

datasets. These genes are significantly enriched in radial glial cells in prenatal 1204 

samples and enriched in excitatory neurons after birth. (d) The development 1205 

spectrum of gene expression for each brain macrostructure. Genes associated with 1206 

GCs were highly expressed in the prenatal period and decreased after birth. (e) 1207 

Gene set enrichment across all GC-related genes indicated terms related to the 1208 

regulation of transcription, metabolic process, morphogenesis, cellular development, 1209 

and neuron projection. 1210 

 1211 
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